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DESIGN OF MINIMUM NOISE DIGITAL FILTERS USING A MIXED NORM

William W, Cooper £ Kenneth M. levasseur and Oved Shisha
Department of Electrical Engineering Department of Mathematics
University of Rhode Tsland University of Rhode Island

Kingston, R. I. 02881 Kingston, R. I. 02881

1. INTRODUCTION

Previous work on design of nonrecursive digital filters which are
identical mathematically to uniformly-spaced linear antenna arrays [l], has
minimized a quadratic error criterion, subject to inequality constraints on
the maximum error in the filter approximation, at an arbitrary but finite
number of points. Quadratie error and maximum error can be made to correspond,
respectively, to total stopband noise power and maximum passband error at a
single frequency. In the following, a weighted sum of the two error criteria
will be minimized by use of quadratic programning. Furthermore, any solution
to the constrained quadratic minimization problem will be shown to be a solu-

tion to a weighted sum minimization problem, and vice versa,

2. STATEMENT OF THE MATHEMATICAL PROBIEMS

The design of a low pass filter can be viewed as an approximation of

the function

£(t) =

where 0 < tp < ts € 0.5. The interval [0, tp] is called the passband and

[ts’ 0.5] is called the stopband, The approximation is done by means of




linear combinations

N
h(t) = 3 a, cos ?uckt 0.0t 0.5

k=0
where the ck's are ndn-negative reals, strictly increasing with k and
co - O;'nlso the ak's are real,

The norm which will be used is the "mixed norm" defined for every real

function g, continuous on both [0, tp] and [ts, 0.5] by:

0.5
le|F =2 max le(t)]| + @ - ») J w(t) |a(t)|? at
0<t<t K

=~ "p ,

with some fixed A, 0 < A €1, and some fixed positive continuous real-valued
function w defined on [0, tp] U [t,, 0.5]. The fact that this definition de-
termines a norm is obvious except for the triangle inequality; its proof ap-
pears in the Appendix.

Our problem, P(A), is to find a best approximation to f, namely,

N
minimize llf(-) - 2 &y ©os 2nck(')‘1.
k=0

ak

However, for computational purposes, we substitute for it another problem,

PD(A), obtained by discretizing the passband, PD(A) is the problem

N
minimize || £(¢) - = a, cos ank(')”D

Where, for every g as above,




0.5
“ glﬁ) = A 2t max lg(ti)l2 + (1-A) j w(t) !g(t)lz dt

s aen il ¢
3

an : ar give number ( reauce
and O Lty <, <Ll <Y S_tp ire given numbers, PD\A) reduces to a

guadratie programming problem,

Each of P(A) and PD(A) has a unique solution. Neither ll‘

l nor
]L”D is strietly convex; however, and we omit the proof, the strict convexity
of the L2 norm can be used to show unicity of solution of each of the
problems P(A), PD(A).

Tn [1], a problem similar to P(A) was solved which also reduces to a

quadratic programming problem after discretization of the passband, The

1
problem, P (€), was

0.5 N

minimize j w(t) | = 3 cos 2ne,t 2 dt
¥-=0
&t -

s
subject to
N :
MRS S'kfo ap cos 2ne,t <1 + € for 0 L t S_tp,

where 0 < € < 1 and w is as above. (Actually, in [1], only the case Ck5515
1 1
was considered.,) Let PD(E) be the discretized version of P (€). Again, by

1 '
the strict convexity of the L, norm, each of P (€) and PD(E) has a unique

2

solution.

e —




N
Let h. (t) = £ a, cos 2ne,t be the unique solution to P(A).
A %-0 k k
Denote €(A) = max ll - hA(t)l. TLet ED(A) be the corresponding
(PIEvr e .

b
‘ '
number for PD(A). The following theorem is stated for P(A) and P (€), but a

similar theorem is true for the discretized versions,

1 1
Remark. Tt is convenient to extend the problems P(A), P (€), PD(A) and PD(E)
to the cases A = 0,1; € = 0,1. Existence of solution for these problems is :

still true.

Theorem 1. Let £, w, tp, ts and ¢,, k = 0,...,N, be fixed as above. Each

k’
|
P(A), 0 < A <1, is equivalent to some P (€), 0 < € < 1. That is:

(1) For cach A, 0 < A <1, let h, be the solution of P(A). Then

A
there is an €, 0 { € < 1, such that h, is the solution to P'(E); and

(2) For a given €, 0 £ € < 1, let g¢ be the unique solution of P’(E).
Then there is a A, 0 £ A £ 1, such that gc 1is the solution to P(n).

Our first proof also applies to the corresponding discretized version

of the theorem. A second proof (for that version only) follows which gives

a valuable insight.

First Proof. (1) Let A be given,0 < A { 1. If h,, a solution to P(n),
is not a solution to P'(E(A)), then a solution to P'(G(A)) would be better
than hh in P(A) which, of course, is a contradiction,

(2) We will prove the second part of the theorem by showing that

€(A) is a decreasing continuous function of A and, in fact, maps [0,1] onto

itself, Tt is clear that €(0) = 1, since the unique solution of P(0) is




ho(t) = 0. Similarly, €(1) = 0. Lemna 1 below is used to prove that €(A)

is decreasing.

Lemma 1. If O < Al < A2 < 3, ay & a, and b2 < bl, then either

(R) Ajay + (1,- A2)b1 <Aa, + (1 - A,)b,

s + \
or (B) Aa, + (1 Adb, < Ajap + (1 Ay)by
b. - b A
Proof of lemma 1. Either (i) L 2 < £ or
a, - a 1 -2
2 2
b, - b A A A
B 1 2 1l . 1 2 R s :
(ii) > , 8ince < . Clearly, (i) implies (A)
a, - a; 1 - Al 1 - Al 1 - k2

and (ii) implies (B). Lemma 1 is proven.

If we had A, < A, with G(Al) < E(Az), we would arrive at a contra-
diction to Lemma l; hence, €(A) is decreasing for 0 < A < 1. Also
€(0) =1>€(A) >0 =¢€(1) for 0 < A < 1.

The continuity of €(A) can be established by a straightforward

argument,

Second Proof (for discretized version). Convexity of the positive definite
quadratic part of the objective functions and convexity of the consiraint

functions guarantee applicability of the Kuhn-Tucker conditions to both

1
PD()\) and pD(e), for 0 < A <1and 0 < €< 1.(See [3], pp. 20, 90.) The
special cases A = 1 and € = 0 give the special solution h(t) = 1. For the

other cases, define the approximating function

h (_?._,t) =
i

a; cos 2ncit
1

1 e




and non-negative constraint functions

2) = (h(a,t) - 1T

[o.°]
e
+
—~
[
N~
I

o e =
gk_(a) i (1 h(_{{,tk))
where b¥ = 8:

Necessary and sufficient Kuhn-Tucker conditions for (al,az,...,aN) - a=a

'
to be a solution to PD(EO) are

m r
. 2 + -
0 = grad Hh H + & o, _gradg, (a) + I o_grad g _(a)
a - k=1 k a ket k=1 k a e

Gt oy >0, op >0
01: (gk+(ig) X Eo) ol

1,2y000yM,

[

O (gk_(fg) = ) =0, k

If we first multiply the objective function in PD(A) by (1 - A)"l, it is easy

to see that PD(A) is equivalent to
minimize uwpz + “h “S s
ap

subject to gk+(g) <p

g (a) <p,

A
1-a°

where He = The Kuhn-Tucker conditions for a global minimum for this

problem at a = 2, are




~ m m
0 = grad |h Ho v B2 n grad g, (a) + 2 i grad g (a)
. i T R Bl = a ™ ’

lo

m
(%%) Ol= 2o = +
B o Mo ™ P
pk+_>_0, pk__>_0,
!
uk+<gk+(ao) o ’

v
o

pk-—(gk—(a ) = P) e = 2 e

1
Notice that if we start with the minimum point, ags of PD(EO), then set

g
ko= 132, .00y and b = -é—eo 3
Tell

il + W the Kuhn-Tucker
e e

conditions (**) will be satisfied for PD(pm) and hence, a_ is the minimum

point for PD(uw). Note that €y, = € will be the solution value of p.

1
If a, is the minimum point for PD(AO), then again set a!k-i - pki and

1 1
€ = p and we see that at a s (*) also is satisfied and so a, is the minimum

1
point for PD(E). (However, this half of the theorem is immediate as

shown in the beginning of the first proof, above.)

NUMFRICAL EXAMPLES

1
We will compare the solution of a problem of type P (€) given in [l]
with solutions of PD(A) for various values of A. All of the computation
was done with a computer program called QPS which was available at the

University of Rhode Island Computer Center, The algorithm that it uses is

based on numerical methods described in [2].




We will take c

=k

k

other specific quantities

and w(t) =1, as in the examples in [1]. The

were:

i

I

Il

0002 (1 - 1), 1w 14250005,

0.135,
14,
0.035,

The solution “n [1] yielded a value of 0.0006 for the integral of the func-

tion over the stopband,

To illustrate the discrete version of Theorem 1 we solved numerically

PD(R) for various values of A. Some numerical results are given in Table I.

We see that the solution of PD(A) with A = 0.165 corresponds approximately

to the solution of the problem PD(E) given in [1].

TABLE I
SOLUTION OF PD(A) FOR SOME A

INTEGRAL OVER

A €0 STOPBAND
0.1 0.046 0.00046
0.165 0.035" 0.00057
0.2 0.030 0.00064
(o} 15, 0.017 0.00080
0.8 0.01%4 0.0010%




APPENDIX

Theorem 2. Let A and B be bounded sets of real numbers and let A€(0,1)

be a fixed constant. Let “‘“A be a norm (semi-norm) on C(A), the set of
continuous, real valued functions on A, and let ”.“B be a norm (semi-norm)

on C(B). Then the "mixed norm" ("mixed semi-norm") defined by

lell® = Allel? + @ - Ml

is a norm (semi-norm) on C(A) N C(B).

Proof. The only condition that is not immediate is the triangle inequality.

We will show that

e + &% < (el + Tel)® = Yl + Vel + 2lie) Yl
Let £ and g be in c(4a) N ¢(B). Then
1 1 2 -4
e+l = Al el + @ - Dlg+all

2
A

In

. | 2 2 Nt
M2 + 2aliel lsl, « Al + @n eI + 2(en) el el

3 2
+ (1 - A,Ug]B

i

1212 + el + 2aliefl, e, + 22 - ) liellelly

=

2 2 L 1‘1 ; Lu |
Ve o el + 2Bl Al + @ - mEel - G- Fsl),

We apply the Cauchy-Schwarz inequality in R2 to the quantity in the

square brackets and get:




T I

f 10

e +el® < eI + el « 20 ArlelZ + 2 - el - S 2Ll + @ - MLl

= Jl£1® + el + 2e] Vsl

J Q.E.D.
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